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Abstract

During the last years, the Architecture, Engineering and Construction (AEC) industry in-
tensified the utilization of Building Information Modeling (BIM) for the complete building
lifecycle. Different planning participants equip multi-dimensional building models with infor-
mation to achieve exact delivery dates, detailed cost estimation, resilient quality management,
and a sustainable facility management. This heterogeneous information can be linked to ge-
ometric building models to support the planning process and the asset management over the
building lifecycle. However, these connections are mainly established using software tools that
use proprietary data formats, leading to a lack of interoperability in information exchange.
To regain interoperability, an international standard has been drafted under the ISO 21597
“Information Container for Data Drop”. The question behind this thesis is how linked building
models can be exchanged using the standard and how this standard can be implemented into
a validation framework.

Therefore, a literature review on the exchange of linked building models and state-of-the-art
Linked Open Data (LOD) approaches is performed as a basis for the analysis of the ISO stan-
dard. The results of the analysis are discussed and compared to the Multi-Model-Container.
This thesis introduces an implementation for the import and validation of the standardized
file format, the visualization of the contained documents, the manipulation of links inside the
container, and a loss-free export into the data format. The application was evaluated with an
exemplary BIM-LV-Container. The outcome of the thesis is a suitable framework for users
that need to validate their files. It can be seen as a guideline for developers that have to im-
plement import and export methods of information containers into their individual software
solution. The practical application of both the standard and the framework has to be assessed
in future work.
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1. Introduction

1.1. Motivation

The emergence of Building Information Modeling (BIM) during the last years leads to an
enormous range of capabilities for Architecture, Engineering and Construction (AEC) industry
utilizing building models for the complete planning and construction process (Eastman et al.,
2011). As large recent projects show, the construction lifecycle is an enourmous challenge due
to their complexity for both technical and project management tasks. Besides cost, time and
quality aims, there are a lot of factors that contribute to the success of a construction project.
The complexity of planning and realizing buildings can be countered using digital methods.
With the increasing demand for delivery dates, detailed cost estimation and sustainable quality
management during the planning process, building models are increasingly enriched with
information from different domains and heterogeneous sources (Borrmann et al., 2015).

Due to the unique characteristics of each construction project, varying project partners create
information with different functional and technical characteristics and inject it into the overall
planning process. The amount of different software applications for the specific domains also
provides a large number of file formats. Additionally, not all data is available digitally. The
entirety of information needs to be structured and semantically stored to be accessible for
every project participant. However, this will lead to large-scaled, complex data schemes that
cannot serve the information of every participant during the planning process. For instance,
cost parameters can be attached to geometric building objects, but the Bill of Quantities
(BOQ) provides much more information that cannot be stored within an Industry Foundation
Classes (IFC) model appropriately. Nonetheless, BIM as a method is ideally suited for the
complete lifecycle of a building using digital geometric and information models. Although,
the pervasive use of models and the digital cooperation between involved persons necessitate
a process-oriented optimization of information exchange (Borrmann et al., 2015).

Storing all relevant information in a common building model does not increase productiv-
ity and therefore has little relevance for practical application (Fuchs, 2015). The reasons for
this are diverse and rely in both the technical and organizational areas. From the technical
standpoint, the current software landscape does not support a cross-domain, fully interoper-
able BIM collaboration process, because no application can handle the aspects of all domains
(Fuchs, 2015). Equally important are the organizational aspects, which say that BIM is more
than just the geometric modeling of a building, but the adaptation of the working methods
of everyone involved in the planning (Eastman et al., 2011). A common building model needs
to be maintained by a single organization. In contrast, the reality in Germany is that re-
sponsibilities are generally considered finished when a result is handed over (Fuchs, 2015).
Furthermore, project partners deny to integrate their complete information into a model as it
may be required. These factors make it difficult to manage and exchange a common building
model.

There are a lot of standardized formats and processes that do not fit into a joint building
model since they have established themselves in the construction industry. One example is the

1
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Figure 1.1.: Multi-dimensional building model integration

cost estimation and the creation of a BOQ, which in Germany follows a standardized schema
according to DIN 267 and VOB. The raised data can be digitally exchanged between project
participants via the German Joint Committee for Electronics in Construction (GAEB) inter-
face definition (Schiller and Faschingbauer, 2016). Therefore, it is clear that the information
cannot be included in a single building model, but need to be divided into domain models
and related independent information models. This procedure is often referred to in science
and practice as nD-modeling (Ding et al., 2014). To perform a BIM-based cost estimation,
three-dimensional geometric models are connected to cost information models, e.g. a BOQ
(Hanff and Wörter, 2015). In the case of a so called 5D model, every building object is linked
to an item from the BOQ (see fig. 1.1). To maintain the functionality of the BOQ and not
inflate the building model, it makes sense to leave both models in their original file format.
The question is what the link between the object and the item must look like in order to be
universally formulated and transferable. The connection between geometric objects and infor-
mation can be established with several software tools. But in the most cases, the exchange of
the linked model is done with proprietary data formats.

Since the proprietary data formats are rarely interoperable, they interfere with the openBIM
approaches that are mostly gained through the IFC data format (Du Juan and Zheng, 2014).
Proprietary data formats pose a lot of challenges to collaborative working methods because
changes of original models could cause inconsistencies due to unmanageable links between
models. The same issue concerns domain specific software that is not able to read or manage
links because the formats are not legible. When saving a proprietary format, the changes to a
certain object could be lost due to missing interoperability. To retrieve the openBIM principle
and restore interoperability, the term of information container has been formed within German
and International Standards. The aim is to provide interoperable data inside a container while
keeping the original data available for domain specific application. This container requires a
system with a high generality to achieve a cross-domain data exchange format.

In the context of an information container, especially the link between the BOQ and the
building model became relevant with the implementation of BIM-LV-Container (BLC) in a
national standard in Germany (DIN SPEC 91350, 2016), which has been originally researched
as the Multi-Model-Container. To achieve more than a single case for cost estimation and pro-
vide a cross-AEC approach, an international standard has been drafted under the ISO 21597
“Information Container for Data Drop”. This information container provides heterogeneous
data from any domain in any format and allows a complex metadata structure to organize

2



1. Introduction

models and manage links in a standardized format. This leads to the fact that the users can
access the semantic data inside the container without using proprietary data formats. The
standard has been the motivation for this thesis in order to improve the exchange of linked
building models. It delivers a file format for the transfer of building lifecycle information in a
single data drop.

The motivation for this thesis is the systematic presentation of a relevant topic for research
and practice. With a view to the future publication of the standard, there is little published in-
formation and no known implementation of the Information Container for Data Drop (ICDD).
This thesis with its implementation can serve as a reference for future implementations and as
a guide for other developers that have to deal with the implementation of the standard. The
developed toolkit can be used in further projects as it offers a Web API for operations on the
ICDD file format. In procedural terms, the toolkit can be embedded into a global BIM work-
flow so that all participants can exchange their file stock on a project in a single data drop.
The use of ICDD in the planning workflow allows a semantic archival of the file stock which
results in a higher quality assurance of the planning at any data drop. The container allows
to integrate different planning stages and alternatives of participants from several domains
which brings advantages in transparency compared to the conventional planning processes.

1.2. Structure

This thesis is structured as follows: After this introduction, the thesis begins with an overview
of the state-of-the-art in the exchange of Linked Building Data (LBD) and the related work
in science. The principles of Linked Open Data are defined and explained and AEC specific
use cases are examined. The scientific background is enriched by the introduction of Linked
Building Models. This background knowledge is transferred to the analysis in the third chap-
ter. The concepts of the Multi-Model-Container, the BIM-LV-Container, and the Information
Container for Data Drop are analyzed, compared and discussed. This analysis forms the basis
for the specification of requirements in the fourth chapter and enables understanding of the
implementation.

The fourth chapter gives an introduction to software development workflows and requirement
engineering. In addition, it summarizes the requirements of the software application that is
developed within the scope of this thesis. Therefore, a distinction has been made between
functional and non-functional requirements. Possible use cases for a web-based allocation of
the application are presented. After this, the design and implementation stages are docu-
mented and explained in chapter five. The implementation stage is accompanied by a parallel
evaluation as well as an overall evaluation in chapter six at the end. Finally, the outcomes of
the thesis are summarized and an outlook on future fields of research and implementation is
given.

3



2. Related Work

The following sections serve as background for the analysis of the ISO standard and offer
a background on linked building models as well as general and AEC-specific linked data
approaches.

2.1. Linked Open Data

Linked Open Data (LOD) is a concept for information management along the World Wide
Web. It has been introduced by Berners-Lee (2006) as a part of the Semantic Web. The
original idea of Berners-Lee was to use Uniform Resource Identifier (URI) as the unique
identifier for the data to provide a consistent accessor. The URIs can directly be addressed
via the Hypertext Transfer Protocol (HTTP) protocol and referenced in other data resources.
Four basic principles for sharing and connecting data were defined by Berners-Lee (2006):

1. "Use URI as names for things"

2. "Use HTTP URIs so that people can look up those names"

3. "When someone looks up a URI, provide useful information using the standards"

4. "Including links to other relevant URIs so that people can discover more things"

Concludingly, the concept of LOD delivers data from different sources linked in a data re-
source network on the web covering more than 50 billion data entries by 2012 (Bauer and
Kaltenböck, 2012). Being state-of-the-art in information management, popular examples for
Linked Open Data applications can be found in libraries such as the LOD service of the
German National Library (Hannemann and Kett, 2010). The benefits for interoperability in
information exchange were stated by Curry et al. (2013) as the independent design of sys-
tems, the incremental interoperability and the connection of heterogeneous data. With these
benefits, the availability and usability of data can be increased significantly.

2.1.1. Resource Description Framework

Technically, the ontology for linked data can be developed using the Resource Description
Framework (RDF). The RDF is a framework for information representation in the web rec-
ommended by Cyganiak et al. (2014) and the World Wide Web Consortium (W3C). The RDF
is a non-building specific modeling format for ontologies which creates interoperable data for
both human perception and machine processing (Abanda et al., 2013). An RDF file consists of
a set of semantic statements based on the directed graph theory. Each statement is represented
by a triple of elementary atomic statements using a subject, a predicate and an object (see

4



2. Related Work

fig. 2.1). Generally, objects are resources that are related to each other through the predicate.
The first subject and the predicate usually are resources defined by a URI. The second object
can either be a URI resource or an atomic literal. The summary of triples can be represented
in an RDF graph. A complete documentation of the RDF concept can be found at Cyganiak
et al. (2014).

SUBJECT OBJECT

PREDICATE

Figure 2.1.: RDF triple definition

Moreover, the RDF data type is based on the Extensible Markup Language (XML) format.
While the RDF file is the common syntax for exchange, the interpretation of the RDF data
needs a separate ontology definition called vocabulary. Generally speaking, an ontology in the
meaning of building models is the collection of relations between objects or resources in a
single model (Beetz, 2015). Ontologies offer consistent classifications, relations and properties
of objects. The Resource Description Framework Schema (RDFS) can be used as an ontology
language for defining and documenting RDF vocabularies (Cyganiak et al., 2014).

2.1.2. Web Ontology Language

Within the semantic web, the Web Ontology Language (OWL) has attracted significant in-
terest due to the limited expressivity of the RDFS (Antoniou and van Harmelen, 2009). OWL
is a descriptive language to publish and exchange ontologies within the syntax of RDF and
mainly extends the expressivity of RDF with vocabularies for describing classes. It is available
in the second standardized version OWL2 introduced by Motik et al. (2012). The definition
of ontologies occurs in the RDF file using <owl>, <rdf> and <rdfs> tags. These tags can be
used to create entities such as classes, properties and individuals. Individuals are instances of
a class, which can hold properties in different data types. Therefore, common data types from
the XML schema are available and can be extended. A complete documentation of the OWL
concept can be found at Motik et al. (2012). Within this thesis, the Protégé ontology editor is
used to view and edit OWL ontologies manually which has been developed according to W3C
recommendations by a reasearch group at Stanford University (Musen, 2015). Furthermore,
the basic principles of the ontology modeling using OWL will be described in the next section
with an example.

owl:Thing

Private

Public

Traffic 
Infrastructure

Town Hall

Central Station

Airport

Subway Station

Building Type

has subclass
has individual

hasMoreTravellerCapacity

class individual

Figure 2.2.: Example ontology: "BuildingOntology"
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2.1.3. Ontology Modeling Example

The graph in fig. 2.2 shows a building ontology with classes, individuals and three types of
edges which can be transferred into an OWL/RDF ontology. In a first step, the namespaces
within the file header need to be defined as seen in Listing 2.1 with an <rdf> tag. The RDF,
OWL and RDFS namespaces are defined with the URI for the respective syntax resource to
offer the provided functionalities. The URI of the “buildings” ontology in line 4 is set to a
fictive resource in this example. The # symbol is fixed as a delimiter within the URI.

Listing 2.1: RDF file header

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:owl="http://www.w3.org/2002/07/owl#"
5 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6 xmlns:buildings="http://www.example.org/buildings#">
7 <!-- Ontology Description inside -->
8 </rdf>

Secondly, the classes structure needs to be created. While the owl:Thing class is always
the root of the ontology, an user-defined entity of the type class can be declared with the
<owl:class> tag as seen in Listing 2.2. The class declaration can contain the resource as an
URI attached to the rdf:about attribute or an rdf:ID attribute depending on the current use-
case. Within the class declaration, annotations like a label or comment can be attached. This
example has a given class hierarchy which can be realized through the <rdfs:subClassOf/>
tag using either the resource or the ID to create the relation.

Listing 2.2: OWL class declaration

1 <owl:Class rdf:about="http://www.example.org/buildings#publicBuilding#
trafficInfrastructure">

2 <rdfs:subClassOf rdf:resource="http://www.example.org/buildings#
publicBuilding"/>

3 <rdfs:label>Traffic Infrastructure</rdfs:label>
4 </owl:Class>

Furthermore, classes, as well as properties, can be derived from each other with the rdfs:subClassOf
or rdfs:subPropertyOf assignment to obtain a hierarchy of classes or properties. The defini-
tion of a property can be found in Listing 2.3, where the object property called hasMoreTravellerCapacity
is introduced in line 1. Generally, properties are distinguished by object properties and data
type properties such as literals or integer. Several additional characteristics like relations and
constraints can be attached to properties.

Listing 2.3: OWL properties and individuals

1 <owl:ObjectProperty rdf:about="http://www.example.org/buildings#
hasMoreTravellerCapacity"/>

2 <rdf:Description rdf:about="http://www.example.org/buildings#Airport">
3 <rdf:type rdf:resource="http://www.example.org/buildings#

publicBuilding#trafficInfrastructure"/>
4 <rdfs:label>Airport</rdfs:label>
5 <buildings:hasMoreTravellerCapacity rdf:resource="http://www.example.

org/buildings#CentralStation"/>
6 </rdf:Description>
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To instantiate a class, the <rdf:Description> tag needs to be called. Within this tag the
individual is characterized by the class type and properties. The defined object property can
be assigned to the individual as seen in lines 6 and 7. Therefore, the user-defined buildings
namespace is called with the respective property and the corresponding object. This expression
again shows the “Subject-Predicate-Object” structure of the RDF file. For instance, the triples
from the code extracts can be summarized as follows:

Table 2.1.: Extracted RDF triples

Subject Predicate Object
...#trafficInfrastructure 22-rdf-syntax-ns#type owl#Class
...#trafficInfrastructure rdf-schema#label “Traffic Infrastructure”
...#trafficInfrastructure rdf-schema#subClassOf ...#buildingType

...#hasMoreTravellerCapacity 22-rdf-syntax-ns#type owl#ObjectProperty
...#Airport rdf-schema#label “Airport”
...#Airport 22-rdf-syntax-ns#type ...#trafficInfrastructure
...#Airport ...#hasMoreTravellerCapacity ...#CentralStation

Most of the predicates that concern the general structure come with the RDFS or OWL. Hence,
there are some triples that are user-defined and describe individual parts of the ontology. While
this example features a small insight into OWL modeling, the concept of modeling ontologies
with OWL is valuable and extendable to certain situations.

2.1.4. Querying information with SPARQL

SPARQL Protocol And RDF Query Language (SPARQL) is a graph based query language
for RDF defined in a recommendation of W3C (Harris and Seaborne, 2013). It can be used to
query triples from RDF files using a specified query syntax. The results can be delivered in
XML, JSON or CSV format. Main component of SPARQL is a query pattern in the Turtle-
Syntax1 using the WHERE statement. The query pattern may contain variables declared with
? or $. A query pattern can be executed using the SELECT keyword. URIs can be abbreviated
with the definition of a PREFIX.

Listing 2.4: SPARQL query example

1 PREFIX buildings: <http:/example.org/buildings/>
2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
3 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
4
5 SELECT ?label
6 WHERE
7 { ?x rdfs:label "Subway Station" .
8 ?y buildings:hasMoreTravellerCapacity ?x
9 }

The exemplary query in Listing 2.4 returns a table of labels from buildings that fulfill the
query pattern for selecting only buildings with a higher traveler capacity than the Subway

1see Turtle definition: https://www.w3.org/TR/turtle/; acessed: May 8, 2018
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Station. In this case, a formatted table with the literals "Airport" and "Central Station" will
be delivered according to the example in section 2.1.3.

Besides the output as a sequential table using SELECT, there are three more output formula-
tions that can be executed utilizing CONSTRUCT (RDF graph), ASK (boolean query) or DESCRIBE
(RDF description). Furthermore, complex query patterns may contain the keywords UNION
and OPTIONAL to do a more specific query. Results can be modified by several filters, a defined
order, specified limits, an offset or the removal of duplicate results. The documentation of
SPARQL is available online at W3C by Harris and Seaborne (2013).

2.2. Linked Building Models

A building model or building information model is an object-based geometric representation
attributed with valuable information for the design and construction phase and throughout
the lifecycle of a building (Borrmann et al., 2015). Moreover, a more collaborative design and
construction process is established with the use of BIM for the complete project team (East-
man et al., 2011). As a result of the work with different project participants, the centralized
model could not be handled properly. For reasons of collaborations, the term part model has
been introduced to include specific design domains as well as spatial parts of a building.

PLANS

SCHEDULES

BILL OF QUANTITIES

SITE

HVAC

STRUCTURE

ARCHITECTURE

BUILDING MODELS INFORMATION MODELS

Figure 2.3.: Integration of Linked Building Models

The integration of separate part models into a coordination model by using the IFC data
format is supported by most authoring tools and collaboration platforms. In addition to
the part model and its inherent information, further data can be linked to the model such
as documents, plans, schedules or BOQ (see fig. 2.3). The data structures of the schedule
and BOQ are separate information models which facilitate the 4D construction sequencing
simulation or the 5D cost estimation. In general, software applications for 4D simulation create
a link between the Globally Unique Identifier (GUID) of an object from the IFC part model
and the Identifier (ID) of a process from the schedule (Hanff and Wörter, 2015). This link can
be generated manually or (semi-)automated. The manual link creation requires the user to
connect a single object or a set of objects to a process, which can be inappropriate for large
projects. Basically, the semi-automated link generation relies on a set of mapping rules (Opitz
et al., 2014). These rules identify objects with a certain attribute or property (e.g. process
number) and create the link to the specific process object. As stated by Törmä et al. (2012),
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the combination of the different information models leads to a lack of interoperability. The
technical issue in transferring linked models between software applications is also identified
by Forgues et al. (2012).

The exchange of linked building models has been focused by the Mefisto project2 in Germany
funded by the Federal Ministry of Education and Research. Outcome of the research project
is the application of multi models for linking building models with other information models
(Scherer and Schapke 2014). The definition of multi model is associated with the definition of
a Multi-Model-Container (MMC). Inside of the container, the part models are independent
instances in their own format which can be connected using a link model. This link model
provides the information about the dependencies between single elements from different part
models.

A practical orientated case of application of the multi model approach is the BIM-LV-Container
(see section 3.1). The BIM-LV-Container has been standardized by the DIN SPEC 91350
(2016) for the purpose of exchanging building models in the IFC format with attached BOQ
in the GAEB DA XML format. The BIM-LV-Container has been developed to be a central
part of the tender phase and allows data exchange especially between planner, client, contrac-
tors and manufacturers.

These approaches represent the recent stages in exchange of linked building models in Ger-
many. Both, the MMC and the BIM-LV-Container are powerful structures for exchanging
linked building models. However, a different consideration for exchanging linked building
models is the use of LOD (see section 2.1). The following section deals AEC-specific LOD
approaches especially for linking and exchanging building models.

2.3. Linked Open Data Approaches for AEC

The relationship between BIM and LOD has been examined by Abanda et al. (2013) looking
at IFC and other common formats in AEC. As a result, the weakness of IFC due to constraints
in the file format’s expressivity has been identified. This is especially true for the use of unique
building elements. Consequently, Abanda et al. (2013) consider the application of the IFC-to-
RDF approach introduced by Pauwels and Van Deursen (2012). This toolbox transfers any
IFC file into the ifcOWL ontology, which is standardized by buildingSMART. It instantiates
ontologies from IFC files, so that the generated RDF-graph can be used to query information
from the model or to link individual elements with product or material links. With these
insights, the authors called LOD "a valid approach for addressing existing interoperability
issues in the AEC domain" (Pauwels and Van Deursen, 2012). This ontology can directly
represent the structure of an IFC file for elements such as IfcBuilding, IfcBuildingStrorey,
IfcSpace or IfcElement. Because of the direct translation from IFC to RDF, the ontology
inherits a complexity that makes it less extendable (Rasmussen et al., 2017b). Meanwhile,
Pauwels and Terkaj (2016) critically questioned the development of ifcOWL and claimed that
ifcOWL will not develop into a standard according to the current state of ontology.

Nevertheless, several generic and domain-specific ontologies have been investigated by Ras-
mussen et al. (2017a) concluding that almost all of them violate W3C ontology policies due
to redundant data sets. To prevent this, Rasmussen et al. (2017a) introduced the Building
Topology Ontology (BOT) that focuses on simplicity and usability in order to replace older
ontologies. Particularly the domain specific ontologies are very limited and fast outdated. To

2The Mefisto project: http://www.mefisto-bau.de/overview_en.html; accessed: Apr. 11, 2018
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keep maintenance effort low and provide an extendable structure, the authors developed the
BOT as a general and simple ontology. This straightforwardness allows specific ontologies to
expand the general building ontology and use its key concepts. The structure was chosen by
the authors to facilitate a fast spread of the ontology and to make BOT become a standard
application in the building industry.

For the purpose of linked building models, Madrazo and Costa (2012) named building on-
tologies as an alternative to centralized models for flexible and dynamic data modeling. Fur-
thermore, Törmä et al. (2012) have presented the outcome of the Distributed Transactional
Building Information Management project, which contains studies on cross-model interactions
and interrelations of part models. The approach relies on the before mentioned IFC-to-RDF
approach and provides converted RDF data sets in a store which enables users to query in-
formation. Moreover, linksets can directly be created using RDF. The research focuses on the
common problems of modeling and generating links as well as tracking and managing changes
due to IFC revisions. A more advanced approach is the extension using BimSPARQL as intro-
duced by Zhang et al. (2018). BimSPARQL is based on the general SPARQL query language
and can be used to retrieve information or find building objects using simplified queries on
the IFC data. There are possible use cases of BimSPARQL especially for automated logic
checks.

2.4. Conclusions

As stated in the previous sections, IFC is the central element during the BIM planning process.
Hence, it has limitations in the expandability and has not been designed to transfer additional
information models. For this purpose, the MMC offers an appropriate solution to exchange
multiple building models linked with information models in a container file. Furthermore,
there are many approaches to adapt LOD into the construction industry. Building ontologies
like BOT or the DRUM project definitely cannot yet productively replace the IFC interface,
but they can extend it and improve its expressability. The concept of LBD will definitely have
a future in construction as it has been researched a lot in the last 10 years. Nevertheless, there
are a lot of open questions how to use the technology correctly within the AEC domain. The
combination of both, a container and acLOD, results in a powerful foundation for semantic
data exchange, which was the intention for the development of the ICDD.
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3.1. Multi-Model Container and BIM-LV-Container

Multi-Model-Container (MMC)

The exchange of linked building models was focused by the Mefisto1 project in Germany
funded by the Federal Ministry of Education and Research. The aim of the project has been
the development of methods for collaborative and process-orientated planning and realization
of construction projects. Using a non model-centric approach, the outcome of the research
project is the formal definition of a data schema for Generic Multi-Models (Scherer and
Schapke, 2011). The development of the Multi-Model approach is based on the following
requirements by Fuchs (2015): cross-domain applicability, ability to store domain models in
their original format, standardized implementation, serialized format, persistent and restorable
links and variable link types.

To meet these requirements, the object-orientated data schema of a Multi-Model is structured
as shown in the UML diagram in fig. 3.1. The root element is the Multi-Model instance. A
Multi-Model is associated to one or more Elementary Models, which can be any instances
of self-contained data models, e.g. IFC models or schedules. Furthermore, the Multi-Model
can be associated with any number of Linked Models, which each represent a non-empty
set of Links. These Links consist at least of two or more Linked Elements from different
Elementary Models. Each Linked Element only belongs to a single Elementary Model and
contains the information to identify the corresponding Element from the Elementary Mode.
With these information, the link between building models and information models can be
established. To identify and connect the entities inside of the Elementary Models, the links

Figure 3.1.: UML diagram of the Generic Multi-Model (see Fuchs et al. (2011))

inside the Multi-Model schema are based on unique IDs. This method allows to leave all

1further information at http://www.mefisto-bau.de/; accessed: July 2, 2018
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elements in their original state as long as there is no inconsistency concerning the allocation
of IDs within the Elementary Models (Fuchs, 2015). Therefore, the original data requires a
uniquely identifying attribute. For instance, that could be the GUID of an IFC object, the
item ID of a BOQ position or the task ID from a schedule. Moreover, Demharter et al. (2014)
presented manipulative and non-manipulative methods to determine the identity of an object
without an explicit ID attribute.

The definition of the Multi-Model schema is associated with the implementation of a MMC to
exchange serialized instances of Multi-Models. Inside of the container, the Elementary Models
are independent instances in their original format which can be connected using a Link Model
(see fig. 3.2). This Link Model provides the information about the dependencies between
single elements, for example, from different part models (Fuchs et al., 2011). In addition to
the document-based data inside the container, annotations and descriptions can be attached
using metadata. The metadata entries inside of the container are structured as key-value pairs
inside the header file of the container (see Listing 3.1).
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Figure 3.2.: Generic Multi-Model Container (see Demharter et al. (2014))

Every MMC file consists of an archive with conformity to the application/zip format and
is characterized by the MultiModel.xml header file formalized by a specific XML Schema
Definition (XSD) (Demharter et al., 2014). The file has the sections meta, models, linkModels
and context and with this defines the container type and locates the models inside of the
container (see Listing 3.1). Moreover, it provides the location of the links and identifies the
models to be linked. In analogy to the UML diagram, a Link Model can be described with
the Links.xml file (linkXML). The XSDs for the mmcXML and linkXML are provided by
buildingSMART Germany2. Besides the header meta section, each element in the models and
linkModels section is equipped with a meta section to provide the respective information.

Listing 3.1: MMC file header

1 <?xml version="1.0"?>
2 <container guid="..." formatVersion="1.0">
3 <meta>
4 <origin>
5 <created>2018-04-06T13:52:31</created>
6 </origin>
7 <info>
8 <i k="ContainerDescription" t="xs:string" v="MMC-

Datenaustausch"/>
9 </info>

10 </meta>

2available at https://github.com/BuildingSMART/MMC; accessed: Apr. 22, 2018
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11 <models>[...]</models>
12 <linkModels>[...]</linkModels>
13 <context>[...]</context>
14 </container>

BIM-LV-Container (BLC)

The BLC is a specialization of the Multi-Model-Container and is standardized in the DIN
SPEC 91400. It contains building models and BOQs according to ISO 16739 and PAS 1067
GAEB Data exchange and structure of Bill of Quantities (GAEB DA) XML. The BLC bases
on the presented structure and also has the .mmc file type extension. The standard delivers a
meta data definition in key-value pairs due to the specific use case of BOQ exchange as it is
defined in Germany. The metadata definitions for the building model and BOQ can be found
in the standard.

Figure 3.3.: File content of a BIM-LV-Container

Inside the MMC archive, a minimum of four files describes the BIM-LV-Container. It contains
a building model in the IFC format, a BOQ in a GAEB format and three more XML files.
The specification of the DIN standard provides one-to-one links between building elements and
information elements only. Moreover, both need a unique identifier (e.g. the GUID and GAEB
Item ID) which are then stored within the link model. In addition to work items, quantity
splits can also be referenced to a building element. With this, a direct link between building
object and the position from the BOQ using attributes of the IFC model is no longer required,
because both are dynamically linked through the link models (Schiller and Faschingbauer,
2016). Further application cases of the BLC are model-based spatial descriptions and model-
based specifications for tenders using the classification catalog from the related DIN SPEC
91400 (2017).
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3.2. Information Container for Data Drop

Besides the approaches in Germany, there have been efforts in the Netherlands to develop an
interdisciplinary container for the exchange of information called the COINS project (Hoeber
et al., 2015). The project targets the standardization of a flexible information container for
connecting the complete amount of building data using linked data approaches. An initial
version of the container has been published in 2010, an update was provided in 2014. These
versions are the predecessors of the ISO 21591: Information Container for Data Drop.

The resulting ISO 21597 standard consists of two parts and introduces a specification for a
container for exchange of multiple information models in a single data drop. The first part
(ISO 21597-1, 2018) comprises the container definition wheras the second part (ISO 21597-2,
2018) focuses on the dynamic semantics. While the container enables the storage of included or
remote documents and the connection to other separate data in a single container, the dynamic
semantics part focuses on the semantic integration of custom data models according to linked
data principles. The analysis will focus on both parts in the following sections and outline the
main structure of the container to provide a clearly defined basis for the implementation.

3.2.1. Part 1: Container

*.icdd

index.rdf

Ontology resources

Payload documents

Payload triples

Container.rdf

Linkset.rdf

Model-1.ext1

File-2.ext2

Link-dataset-1.rdf

Link-dataset-2.rdf

Figure 3.4.: Structure of the ICDD
(see ISO 21597-1)

A container specified according to this standard has the
filetype extension .icdd and represents an archive con-
forming to the application/zip format. The default con-
figuration of the container provides that at least the three
folders and the header file as seen in fig. 3.4 are required.
The header file of the container is always the index.rdf
file which is serialized as an RDF (see ch. 2.1.1) and related
to the container ontology and the linkset ontology.

The ontology files define the container and link concept
and can be found in the ontology resources folder. They
do not necessarily need to be provided inside the con-
tainer as they are available online. Hence, the local files
always have a higher priority than the remote files. The
container ontology delivers syntax for the creation of the
header file, which then can define the version of the con-
tainer, a set of external documents, a set of inherent docu-
ments and the references to link data sets. This details are
provided inside the header file using an individual of the
ct:ContainerDescription class, which is derived from
the owl:Ontology class (see ch. 2.1.2).

The documents, for instance the models or files, belong to
the payload documents folder. Within this standard every
type of self-contained data is designated as ’payload’. Documents can be expressed with an
individual of the abstract class Document from the container ontology. It supplies metadata in-
formation and the link to the container individual as well as a prior version of a document. An
individual instantiated from the document class must either be the type InternalDocument
or an ExternalDocument and include the respective location of the data. Moreover, the
Document class is specialized with certain sub-classes that define an attributed document
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like an EncryptedDocument or a SecuredDocument.

The corresponding data sets are located in the payload triples folder. These link data sets
are characterized by the linkset ontology which specifies linkages between documents or enti-
ties inside documents. Links are defined as a group of two or more LinkElements, and can
be specialized as shown in fig. 3.5. On the one hand, the ontology provides DirectedLinks
that contain any number of LinkedElements differentiated as ’From’ and ’To’ elements.
A subclass of the DirectedLink is the Directed1toNLink which restricts the number of
incoming LinkElements to one. On the other hand, there are BinaryLinks that link ex-
actly two LinkElements. A specialization of both, the DirectedLink and the BinaryLink,
is the DirectedBinaryLink combining the two characteristic properties of the super classes.
The linkset ontology can be extended with user-defined subtypes of the class Link using the
rdfs:subClassOf expression for the class definition.

Figure 3.5.: UML diagram of the Link inheritance (see ISO 21597-1)

The LinkElement can be related to exactly one Document from the container ontology us-
ing the hasDocument object property. Using the hasIdentifier object property enables the
LinkElement to refer directly to a document’s entity using the abstract class Identifier.
Three subclasses extend the Idenfier according to the identification method of entities, in
particular query based, string based or URI-based identifiers. In case a document is an IFC
model, a StringBasedIdentifier could contain the GUID to provide an entity link.

In addition to the structure of the container and the link between its payload, the ontologies en-
able users to perform various versioning tasks, for example for design case studies, tracing ver-
sions or referencing different planning states. Therefore, the classes ContainerDescription,
Document and Linkset are equipped with versionInfo properties. Moreover, instances of
these classes offer the possibility to link to a predecessor from the same class type to track
the version history.

Both ontologies can be extended with additional metadata using functional or data type
properties. Therefore, the tags rdfs:label, rdfs:domain and rdfs:range are mandatory
and no other tags may be used. A complete overview of the ontologies with their inherited
objects and properties can be found in the standard. A summary of the conformity criteria
can be found in chapter five of the first part of the standard.
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3.2.2. Part 2: Dynamic Semantics

After the basic functionality of the information container has been outlined in the section be-
fore, this section focuses on the second part of the standard which are the Dynamic Semantics.
This part extends the container with semantic information by harnessing LOD. Therefore, the
DynamicSemantics.rdf file is deposited into the Ontology Resources folder. A summary of
the conformity criteria can be found in chapter five of the second part of the standard. The
ontology extends the container with six major concepts:

Metadata

In order to extend the metadata of an information container and its content, the root class
InformationModel is introduced in the DynamicSemantics ontology. The InformationModel
delivers an abstract subclass Concept which is associated with the basic metadata for au-
thors and versions from the ContainerDescription and can be instantiated using the sub-
classes Entity, Relation, AbstractProperty,ComplexPropertyValue or the Container on-
tology class ct:Party. These classes and their correct use in relation to DynamicSemantics
are described below.

Information Model Entities

An instance of the class Entity can be used to provide information about any entity included
in an information model, e.g. physical components like building elements. Besides the inherited
properties from the Concept class, it has properties for versioning according to ch. 3.2.1 and
enables connections between instances of the Entity class.

Properties

Figure 3.6.: UML diagram of the AbstractProperty inheritance (see ISO 21597-2)

The standard provides a class structure for modeling either primitive types of properties
or complex properties with mutable content. Therefore, the two classes ComplexProperty
and SimpleProperty are inherited from the abstract class AbstractProperty, which itself
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is inherited from the Concept (see fig. 3.6). Because of this heredity, properties can also be
provided with version and author information that are defined in the Concept class.

The types that form the SimpleProperty are referring to the XML built-in data types which
are defined in the XML Schema Definition by W3C. Numeric properties can be equipped
with units that refer to the ICDD-QUDT-Units extension (see ch. 3.2.2). Complex properties
consist of an objectValue attribute that is from the type of a ComplexPropertyValue. For
instance, a complex object value can be a ct:Party to introduce a new role like an inspector,
a supplier or an engineering company.

Relations

For modeling relationships between instances of the class Concept, the Relation class is
introduced as an abstract class. It can be specialized by the disjointed classes Connection or
ContainsRelation.

On the one hand, the Connection class has to be used to connect exactly two instances
of the Entity class directly. Furthermore, the specialized class DirectedConnection also
allows directional connections between a fromEntity and a toEntity. Therefore, the Entity
class defines the properties hasConnections, hasIncomingConnections and hasOutgoing-
Connections.

On the other hand, the ContainsRelation can be used to define hierarchies and aggregations
within a structure. The relation connects an instance of the Part class to an instance of the
Assembly class. The Assembly is aggregated from a group of ContainsRelations as seen in
fig. 3.7. Using this structure, for example, building topologies like the relation of a wall and
its including windows can be modeled within the metadata of the container.

Figure 3.7.: UML diagram of the ContainsRelation inheritance (see ISO 21597-2)

Expiring Concept

To distinguish prior and current versions of an Entity, an object property priorVersion can
be used to refer to an outdated version which has the same class as the object itself. Expired
entities have to be connected to the ExpiredConcept class to be tagged as expired. The
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expiring concept is an extending development to the versioning information of the container
in part 1.

User Defined Ontologies (UDO)

The DynamicSemantics.rdf can be extended using RDF files. UDOs belong to the Ontology
Resources folder within the container archive or may be available through an URI. Further-
more, they can extend the classes introduced within part 2 of the standard. In most cases, a
specialization of the Entity class is relevant. The above presented concepts can be applied
in an UDO to extend the metadata of the container. Use cases of UDOs are presented in the
standard itself with the ICDD-QUDT-Units extension, which can be found in Annex C of the
standard. QUDT is an ontology-based specification and stands for quantity kinds, units of
measurement, dimensions and types. With a manipulation of the unit object property from
the numeric simple properties, the range of the property values can be extended to accept
types of qudt:Unit. The adapted version of the general QUDT ontology is provided with the
standard.

3.2.3. Integration of DynamicSemantics with Container and Linkset

The integration of both parts of the standard is handled with the definition of subClassOf
triples between part 1 and part 2. With the definition of subclasses (see fig. 3.8), the definition
of Links can be seen as a specialization of the Entity structure with its defined properties
in the DynamicSemantics. Altogether, an analogy between the two parts can be created as
well as an inheritance structure. Besides the classes, also the properties are defined as sub-
properties. With this adaption the container is supplemented by a wide range of expressions
and UDOs for linking documents as well as entities.

ICDD Part 2: Dynamic Semantics

ICDD Part 1: Container & Linkset

DS:ENTITY

LS:LINK

DS:COMPLEX
PROPERTY

DS:COMPLEX
PROPERTYVALUE

LS:LINKELEMENT CT:DOCUMENT

LS:IDENTIFIER

hasLinkElement hasDocument

hasIdentifier

hasProperties objectValue

subClassOf
subPropertyOf

Figure 3.8.: Integration of DynamicSemantics with Container and Linkset (see ISO 21597-1)
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3.3. Comparison and Discussion

The following chapter compares the presented containers and discusses the characteristics
of both. In table 3.1, criteria for both the container and the relying data model are listed.
The data model quality criteria are defined according to the criteria of Fettke (2001) for
classification systems.

Table 3.1.: Comparison of ISO 21597 and DIN SPEC 91350 / MMC

Criterion ISO 21597 DIN SPEC 91350 / MMC
Structure well structured with files

organized in folders
simple structure inside container
with all files on top level

Linksets provides various extendable
linksets and relations

provides simple one-to-one links
only

Versioning versioning is fully implemented
for documents, entities, and other
objects

supplies metadata information
about the creation date and the
software with which it is created

Metadata almost unlimited possibilities for
metadata annotation

allows key-value-pairs with
primitive data types for metadata
annotation

Applicability high relevance and wide range of
applications

high application relevance but
less use cases

Extendability highly extendable through UDO
and external LOD extensions

very specialized and less
extendable

Consistency inconsistent data due to
discrepancies between RDF and
object-orientation and error-prone
implementation for UDO parsing

no automatic control of
inconsistencies, but generally less
prone to error

Economic
efficiency

high effort in implementation due
to RDF parsing and dynamic
semantics

medium effort in implementation
due to simple structure and less
complexity

The general structure of both containers is quite similar and has a clear arrangement. The
use of zip archives with a defined header file is common practice for the simple creation of
a container file type. With this file type, the container can easily be associated with specific
applications, which is important for the future user experience. An example for the use of
archives for a container in the building industry is the .bcfzip format. It can be used for the
exchange of issues and markups of building models and includes a header file which localizes
screenshot files and geometric position files inside the container. Because of the amount of
ontology and linkset files the ICDD needs to be organized in a defined folder hierarchy.

The definition of the linksets in ICDD is different to the BLC: While the BIM-LV-Container
uses the simple structure one-to-one links due to the application case, the ICDD provides a
more complex linkset structure with directed or undirected links which can be extended by
sub-typing links with an additional RDF ontology (see annex C of ISO 21597-2 (2018)). It
should be noted that the Multi-Model-Container as a generalization of the BLC also supports
the use of specialized links.
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Moreover, the ICDD delivers functionalities for the versioning of documents, entities, links,
and the whole container. The interrelationships between versioned elements can be handled
with the relation classes from the DynamicSemantics ontology. Through these structures, not
only outdated versions can be managed, but also alternative versions can be provided in a
container. The MMC can handle specific versions of an elementary model, but cannot annotate
the interrelationship between them. This can lead to an inconsistent repository and orphaned
files inside the container.

Generally speaking, the ICDD structure has been developed to manage metadata first. With
the Linked Data approach and the UDOs, there are nearly unlimited possibilities to store and
structure additional metadata for different objects. The extension of properties in part 2 of
the standard delivers several data types and the opportunity to annotate with complex user
defined properties. While the ICDD offers these features for metadata annotation, the BLC
and MMC offer a key-value structured metadata dictionary, which can be applied to most
of the included data-types, e.g. documents or links. There is no possibility to express more
complex properties.

The applicability of both approaches is given. While the MMC has been applied in commercial
software applications with the usage of the BLC, the ICDD is still under development and
has not been validated in its current version. Nonetheless, the predecessor of ICDD was
developed close to the practice by a consortium of construction companies in the Netherlands.
Furthermore, it can cover a lot of application cases due to its extendability.

On the one hand, the ICDD is very extendable through the development of UDO and external
semantic web extensions. This offers possibilities to extend containers according to special
needs and individually for every project. On the other hand, the BLC is very specialized, and
also the MMC has a static data structure, so that there is less extendability. Nevertheless, the
MMC can serve as a container in a lot of use cases in its actual configuration.

The ICDD is based on semantic data in the RDF format with the OWL modeling language.
Because of the difference between OWL modeled ontologies and object-oriented software ap-
plications, the implementation has to focus on several aspects which also have been examined
by Völkel (2005). If one or more of these aspects have been neglected, especially when parsing
UDOs, this can lead to inconsistencies during the parsing process. Data consistency is there-
fore strongly dependent on actual implementation. By contrast, the MMC has a solely static
data structure, which prevents inconsistencies. Both do not feature an automatic inconsistency
control, which then has to be implemented into the client’s software application.

As the aforementioned paragraph already states, there are differences in the economic effi-
ciency due to the implementation effort. The BLC can be implemented with less effort which is
already evident from the standard. More complexity in implementation is caused by a general
MMC implementation. Due to the static implementation, there is only medium effort. How-
ever, because of the dynamic semantics and the semantic web implementation of the ICDD,
it is obviously the alternative with the most implementation effort.

In conclusion, the high flexibility and extensibility have negative effect on the error-proneness
and complexity of the implementation. Nevertheless, the ICDD provides far more functionality
and, due to the current technology, has large potential for the future.
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The analysis and specification of requirements for an application are the first and thus most
challenging steps in software engineering (Balzert, 2009). The requirement analysis determines
user-oriented needs and conditions that a software system needs to fulfill. The specification
of requirements is the complete, unambiguous and consistent composition of all requirements
in a standardized format (Balzert, 2009). Together these steps describe the term requirement
engineering.

ANALYSIS

SPECIFICATION

DESIGN

IMPLEMENTATION

INTEGRATION AND TEST

INSTALLATION

MAINTENANCE

REQUIREMENT ENGINEERING

Figure 4.1.: Process model for software engineering according to Royce (1987)

As shown in fig. 4.1, requirement engineering, as well as overall software engineering, is an
iterative process between the single stages. The described requirements must be validated, re-
analyzed and newly specified if they are not appropriate to forward them to the design stage.
Requirements of a software application are classified into functional and non-functional re-
quirements. On the one hand, functional requirements describe a function or service provided
by a software application (Balzert, 2009). These include the structure, usage and transfer
of data, the functions for processing data and the dynamic system behavior, e.g. between
functions or data. On the other hand, non-functional requirements concern the quality, per-
formance and boundary conditions (Glinz, 2007). Quality requirements include statements
about the availability, usability, expandability, maintainability and data security. Performance
requirements focus on the time behavior, the resource utilization and efficiency of a software
system. Furthermore, boundary conditions can be technical or physical constraints, but also
legal, cultural or environmental statements (Glinz, 2007).

Most requirements for software applications use natural language for specification (Balzert,
2009). However, the pros and cons of this are on the one hand the flexibility and intelligibility
but on the other hand the ambiguity of interpretation. An alternative is the avoidance of
natural language requirements using formal model-based specifications. In this thesis, the re-
quirements are specified in natural language. The functional requirements are represented as
so-called user stories that were introduced by Beck (1999) within his Extreme Programming
approach. A user story is a incisive written description of a single function that the software
system offers to a user. The summary of user stories forms the product backlog. As the user
stories use natural language, a precise pattern needs to be defined. For Object-Oriented Pro-
gramming (OOP) the following pattern has turned out to be successful according to Zeaaraoui
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et al. (2013):

As a <role>, I want to <action> <object>, so that <business value>.

In the context of programming, role means a user that has a specific role within a software
system, e.g. a logged in user. Furthermore, action and option are a combination which achieve
a specific goal for an object using the defined action. The resulting business value can be
additionally described as a reason or motivation. User stories whose complexity exceeds this
pattern must be divided and defined in smaller user stories. In the following sections, the
beforementioned requirements are specified.

4.1. Specification of Functional Requirements

The table 4.1 contains the specifications of functional requirements which arise from the
analysis of the ISO standard in ch. 3 and the related use cases that can be found in the
standard’s appendix. The user stories are numbered and sorted by the category. The category
IO stands for all operations in the field of import and export, VAL for the validation, VIS
for the visualization, LINK for all requirements concerning links and linksets, DATA for all
requirements according metadata and API for all requirements related to the Web API.

Table 4.1.: Definition of user stories

# CAT User Story
001 IO As a website user, I want to upload an ICDD file, so that it is available

on the server for further operations.
002 IO As a website user, I want to access an uploaded ICDD file during the

active session, so that I can perform operations on it.
003 IO As a website user, I want to delete an uploaded ICDD file, so that no

data remains on the server.
004 IO As a website user, I want all data to be deleted after the session has

expired, so that no data remains on the server.
005 IO As a website user, I want to download my manipulated ICDD file, so that

I can use it outside the application.
006 IO As a website user, I want to upload additional documents to the website,

so that I can use them inside the container as a payload document.
007 VAL As a website user, I want to start a validation for an uploaded ICDD file,

so that I can be sure that my file is conform to the ISO standard.
008 VAL As a website user, I want to view and download validation results for a

validated file, so that I can see which aspects have been validated.
009 VAL As a website user, I want to correct failed validation aspects for an ICDD

file, so that I can get a validated file.
010 VIS As a website user, I want to get a structured representation of an

uploaded ICDD file, so that I can see the contained payload documents,
the metadata and the links.
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011 VIS As a website user, I want to get a visualization of payload documents, so
that I can see what information is contained by the documents and what
the appearance of a geometric document looks like.

012 VIS As a website user, I want to get a graphical visualization of links, so that
I can see which elements of the payload documents are concerned by a
link.

013 LINK As a website user, I want to get a representation of the links from a
specific linkset, so that I can see which link types and link elements are
included.

014 LINK As a website user, I want to create new links into a specific linkset, so
that I can extend the existing data.

015 LINK As a website user, I want to update and delete existing links, so that I
can manipulate the existing data.

016 LINK As a website user, I want to filter existing links, so that I can see specific
link types.

017 LINK As a website user, I want to validate linksets for consistency according to
user-defined rules, so that I can see whether a linkset is consistent or not.

018 DATA As a website user, I want to create metadata for any object within the
container, so that I can extend the existing data.

019 DATA As a website user, I want to update and delete metadata for any object
within the container, so that I can manipulate the existing data.

020 DATA As an website user, I want to read metadata for any object within the
container, so that I get information about any object.

021 API As an interface user, I want to perform a POST request containing an
ICDD file, so that I can upload the file and start the validation process.

022 API As an interface user, I want to perform a GET request for the validation
results, so that I can be sure that my file is conform to the ISO standard.

023 API As an interface user, I want to perform a GET request for the payload
documents, so that I access the original data of a payload document.

024 API As an interface user, I want to perform a GET request for metadata of the
container, so that I can access single metadata entries.

025 API As an interface user, I want to perform a POST request containing
metadata, so that I can update or delete single metadata entries.

026 API As an interface user, I want to perform a GET for the ICDD container, so
that I can access a file based version of the manipulated container.

027 API As an interface user, I want all data from a closed session being deleted,
so that I can be sure that no information from my container is stored on
the server.
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4.2. Specification of Non-Functional Requirements

Technical Constraints

The application must be made available as a web application as well as a Web Application
Programming Interface (API). Both do not need an authentication to perform the imple-
mented operations, but therefore the user session (=30min) need to be linked to an uploaded
ICDD file. As long as the session is alive, the user can access the associated file. If the session
is expired (>30min) or the user explicitly deletes the files, the connection must be disposed
and the uploaded data as well as all further created data needs to be deleted. As Web APIs
are generally stateless, the session ID provided at the file upload must be carried along all
requests. The server must recognize, whether a file has been accessed within the standard
session time and dispose the generated data if the session is expired.

Quality Requirements

The application must satisfy the following qualities:

Availability: The web application as well as the Web API must be available for public access
via HTTP protocol. The definition of the API must be documented and be available
online.

Usability: The web application should be easy to understand. Therefore, the Graphical User
Interface (GUI) layout and its elements should be consistent in functionality and design.
Error messages, especially when processing an ICDD file should be available for the user
and explain how to recover the file.

Maintainability: Maintenance activities concerning the web application and the API are car-
ried out exclusively on the server. There is no need for any client-based updates. The
API definition should be formulated as generally as possible so that subsequent changes
are not noticeable to the client.

Data Security: As already stated in ch. 4.2, the complete user data must be deleted auto-
matically after the session timeout or a manually delete. This also applies to all log files
of the validation. A global logfile for logging application errors is not affected by this.

Performance Requirements

Time behaviour: Generally, the application has to react within an appropriate time span
(<5 sec) for enterprise software application to every request either from the website or
the API. An exception to this is the upload of ICDD and other files.

Resource utilization and efficiency: The web application should utilize not more than 8GB
of physical memory of the server capacity.
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4.3. Requirement Management

In order to manage the requirements along the design and implementation processes, the
product backlog with the use cases has been moved onto a MS Team Foundation Server (see
fig. 4.2). This development tool supplies a software project management system including the
product backlog. As a distinctive feature it provides a source code repository. This repository
can be utilized with MS Visual Studio, so that developers can directly access their work items
and link source code change sets to them.

Figure 4.2.: Product backlog inside Team Foundation Server

Using agile methods in software development, the user stories were rated with story points
from one to ten in order to obtain a ranking according to priority (Beck, 1999). Priority one
stories are more likely to be developed in early stages than priority ten stories. As seen in
fig. 4.3, the user stories can be linked to other items, such as other user stories, functions or
tasks. With this, the development can be structured and the process can be monitored.

Figure 4.3.: Requirement management inside Team Foundation Server

With this preliminary work, the design and implementation stages can be focused. Further-
more, during the implementation process, the work items in the development tool are used for
tracking development progress and managing issues and errors during evaluation phases.
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This chapter deals with the conceptual design and implementation of a software application
according to the requirements defined in Chapter 4. Before the functional requirements can
be implemented, the architecture of the software must first be defined. Therefore, the first
section sets up a basic framework for a development environment. It describes the use of
third-party libraries for RDF serialization and the viewing of IFC files. The following sections
then explain the respective functional implementations.

5.1. Basic Framework Design

5.1.1. Web application and interface design

The development of a web-based application is being done using ASP.NET Core. This frame-
work is a platform independent technology for creating web applications and is provided by
Microsoft. When using ASP.NET Core, Razor Pages is a simplified page-centric view engine
for dynamically created websites, which is based on the Model-View-Controller (MVC) pat-
tern. This pattern generally splits an application into a data model, a representation (view) of
data and a controller, which maintains the view and the model. The Razor Pages framework
separates the client-based HTML site from the server-based C# code in the so-called page
model. Data from the model can be rendered into the HTML site at runtime to generate
content for browsers dynamically.

CLIENT WEB API

REPOSITORY

REQUEST HTTP GET, POST

DATA

BUSINESS LOGIC

RESPONSE XML/JSON

SERVER

Figure 5.1.: Design of the Web API

In order to establish a uniform, machine-readable client-server architecture, the web applica-
tion is equipped with an accessible web interface. With the additional provided ASP.NETWeb
API, web services like Representational State Transfer (REST) can be implemented. REST
uses the stateless HTTP protocol, in this case with the most common methods GET, POST,
PUT and DELETE. Resources on the server can be addressed using URIs and are usually trans-
ferred as XML or JavaScript Object Notation (JSON) (Rodriguez, 2008). Web APIs build on
the ASP.NET Web API framework are based on the REST principle and serve the common
requirements that the interface is resource-oriented, stateless, cacheable and structured in a
layered system. The layered system means that the access to data from different resources

26



5. Software Implementation

is granted at exactly on location, the Web API, as it is described in fig. 5.1. The client, e.g.
a desktop application or a web application, sends an HTTP request to the Web API. The
server backend processes the request using the business logic, e.g. the validation tool, the data
and the files from the repository. A response from the Web API returns in either XML or
JSON format. For implementation, the server backend is used for both Web API and the web
application.

5.1.2. RDF Library

To develop a powerful and efficient application, a third-party library to deserialize and parse
the RDF files from the container is needed. The library is required to be open-source and free
licensed. Furthermore, three major functions need to be supported: parsing from RDF/XML
serialized files, querying data from the parsed file and writing RDF/XML files. When selecting
the libraries, care was also taken to ensure that they are maintained at regular intervals and
are compatible with the above environment. Overall, the following libraries were considered:

� Intellidimension Semantics.Framework 2.0, latest commit: 2010-09-29

� RDFSharp, https://github.com/mdesalvo/RDFSharp, latest commit: 2018-08-25

� dotNetRDF, https://github.com/dotnetrdf/dotnetrdf, latest commit: 2018-06-07

Due to the activity of the last two libraries, these are subject to closer examination. Both
frameworks work with .NET, while dotNetRDF has been proved to work with the latest
.NET Core version. They are able to create and manage common RDF models (graphs,
triples, namespaces). Moreover, the dotNetRDF is distinguished by the fact that it also has
an ontology graph model. Both frameworks support the representation of model elements in
memory, but also deliver methods for storing data in a backend store or a database. This is
especially important regarding the scalability of the backend. As an advantage, dotNetRDF
supports more than six different storage providers. Finally, both libraries deliver a SPARQL
request engine and with this fulfill the functional requirements.

For further examination of the performance, an efficiency test has been conducted. An im-
plementation with both libraries has been evaluated with RDF/XML files with the file sizes
1MB, 5MB, 15MB and 150MB (see fig. 5.2).
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Figure 5.2.: Efficiency of RDF libraries
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In fig. 5.2 (a), the time needed by the libraries to parse the given files into triple graphs
has been visualized. In the range of 1MB to 15MB, no significant differences can be seen
between both graphs and the required time is nearly the same. At 150MB dotNetRDF needs
approximately 4.4 seconds longer to parse the file than RDFSharp, which effectively is about
8% difference.

In fig. 5.2 (b), the memory needed by the libraries to parse the given files into triple graphs
has been visualized. The difference between both libraries can already be seen in the small
range of file sizes. In the arithmetic mean, the dotNetRDF library needs around 38% more
physical memory. Reason for this could be the method of how the triplets are inserted into
the graph. Nonetheless, there are several other reasons causing memory needs.

Concludingly, RDFSharp is more efficient than dotNetRDF, especially with large files. How-
ever, the file sizes within the ICDD will probably not exceed 15MB per file (225.000 triples).
Despite the efficiency, dotNetRDF offers more functionalities, an easy implementation, a large
documentation, and an evaluated compatibility. Because of this, dotNetRDF is used for the
implementation of this software application.

5.1.3. IFC Library

As it is stated in the functional requirements, the software application needs to provide an IFC
visualization to fulfill the requirements 011 and 012. Therefore, the following aspects apply,
when a library for IFC visualization is examined. The library must import files in the IFC data
format. It must read and visualize the 3D geometry as well as the attributes of the related
objects and at least the GUID of the objects. For interactivity with the models, the library
must support navigation within the model viewer using the mouse and/or keyboard. For the
visualization of link elements, the library must support highlighting of elements according to
a specific GUID and the selection of elements with a mouse click to get the related links for
a specific element. Moreover, the adaptability to all other components must be ensured.

The xBIM Toolkit is a popular tool for visualizing and analyzing IFC models within the .NET
Framework developed by Lockley et al. (2017) at Northumbria University. It has been devel-
oped since 2007 and implements both standards IFC2x3 and IFC4. The framework mainly
consists of two core libraries the xBIM Essentials and xBIM Geometry which are written in
C# and C++. On the one hand, the toolkit provides support for retrieving alphanumeric infor-
mation from any object and represents the object model of the IFC Schema. On the other
hand, it delivers a geometric representation of the complete model using the WebGL based
xViewer.

By means of the JavaScript library WebGL, the geometric data from the IFC file can be
rendered as interactive 3D graphics within a browser. To utilize the geometry for web browsers,
it has to be extracted and transformed into a binary format that has been introduced in the
Geometry library as wexBIM. Since the conversion of the geometry requires memory resources,
this is outsourced to a separate worker to maintain the response time of the web application.
The worker runs in a separate instance on the web server and can be migrated on any other web
server. The requests to the worker can be performed as HTTP POST methods including the
original IFC file as form data. It responses with a binary file stream containing the converted
geometry file which then can be further processed.

The geometry stream is transferred to the web application and stored in the file system. The
web application creates the xViewer instance and loads the geometry file into an xViewer
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Figure 5.3.: Outsourcing the geometry conversion into separate worker instance

canvas. The user can handle and navigate within the loaded model using the mouse. Methods
for camera interactions, clipping, click events, object picking, hiding objects, and highlighting
objects are implemented and documented by Lockley et al. (2016). The connection with the
model information can be made using the xBrowser library. The information can be queried
with the picked objects presented in the xViewer and their ID. In summary, the xBIM Toolkit
meets the defined requirements for an IFC library and is used for visualization.

5.2. Import and Export Components

5.2.1. Data Handling

The first step after an ICDD file is processed onto the server is the decompression and storage
into a file repository. The data model holds the information of the file localization. After
the file-based operations are completed, the inherent metadata files need to be imported and
exported. The RDF import and export workflows follow the basic principles according to fig.
5.4.

SCHEMA INSTANCES

RDF

C#

RDF SCHEMA

C# CLASSES C# INSTANCES

RDF DATADYNAMIC

STATIC

dotNetRDFCODE GENERATOR

Figure 5.4.: Integrating RDF and object-oriented programming as stated by Völkel (2005)

RDF-to-C#

The transformation of instances between the RDF graph and the corresponding C# instances
can be done at runtime using the introduced dotNetRDF library (fig. 5.4). Since the ontologies
for the static content are standardized, the data model has been implemented into the software
application directly. This has the advantage, that the C# classes from the standardized RDF
schema do not have to be generated at runtime what leads to time and memory savings.
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However, a disadvantage is the server-side maintenance effort due to changes in the standard.
The imported RDF data can directly be instantiated from the respective classes. Every class
in the data model can be instantiated either from the triple graph constructor or from a
constructor, which creates an instance that is not yet existing in the triple graph. At runtime
of the process, the RDF data is kept available as a triple graph and stored in memory within
the container data structure.

An overview of the data model can be found in appendix A.1. Generally, the data model
is developed according to the classes that are defined by the standardized ontologies from
the ISO 21597. There are three namespaces according to the three ontologies for container,
linkset, and dynamic semantics. The DynamicSemantics namespace has two sub-namespaces
for properties and relations. In addition to this, a general namespace ContainerModel pro-
vides the IcddContainer class, that is the basis for every imported container and provides
the repository and the metadata. The IcddManagerIO class supports the application with
functionalities for the transformation between RDF and C#. For instance, it includes methods
for getting namespace URIs, the GUIDs of a single instance or a set of instances depending
on a certain type, or updating an attribute of an instance. Moreover, the ContainerModel
namespace contains the class IcddObject which is base class for every object read from an
RDF file. It includes the ID attribute which is important for uniquely identifying an RDF
instance. The ID attribute must be set when creating a new instance and cannot be changed
afterward. The IcddObject class provides information about the author and modifier as well
as the creation and modification dates.

The remaining class within this namespace is the IcddUserDefinedOntologies class which
serves as the entry point for UDOs and provides the respective RDF triple graph from which
the Code Generator (see fig. 5.4) generates the classes at runtime. In the case of a present UDO,
there are no instances created until all classes are generated at runtime. The ontology files
serve as a blueprint for the C# classes. The code generation is focused in ch. 5.2.3. In addition
to these classes, an interface IVersioning provides the required methods for versioning of
objects and indemnifies that the respective methods return valuable information.

C#-to-RDF

Conversely, the C# classes offer methods to transfer the actual instance into RDF triples and
use the RDF library to write changes into the file. Literal properties of instances can be directly
manipulated using the implemented set methods of the respective properties. These methods
refer to the IcddManagerIO class and apply the properties using the SetInstanceAttribute
method (see app. A.2) into the RDF graph. Object properties of instances first can either
be edited or replaced. To edit an object property, the respective object has to be adressed
with its GUID and can be changed according to the procedure above. An object property
can be replaced by a new object which has first be instantiated from the constructor. The
constructor creates the triples that are necessary for the description of this instance. The
object has to be added to the property as an URI node which can again be done using the
SetInstanceAttribute method.

Every operation on the RDF graph has to be done using the Retract and the Assert methods
on the RDF graph. First, the triple which defines the property has to be retracted from the
graph. Then a new triple with the instance as a subject node, the property as a predicate node
and the new object’s URI as an object node has to be created and asserted to the graph. The
changes are only applied to the RDF graph. As long as the container is not saved manually,
the modifications are not persistent in the container. When the container is going to be saved,
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the modified RDF graphs are written into the RDF file using the RdfXmlWriter from the
dotNetRDF framework.

During the implementation, the characteristics of the OWL modeling have to be mentioned.
There are structures that cannot be transferred one-to-one into the object-oriented data model.
For example, OWL supports the inheritance of properties with the subPropertyOf attribute
(see fig. 3.8) which cannot be directly implemented within the object-oriented programming
language C#. More examples of differences between both can be found at Völkel (2005).

5.2.2. Session Handling

A static SessionManager class handles all sessions for the web application and the Web API.
The manager provides the methods StartSession, CloseSession, and GetSession. Each
uploaded file or POST upload request calls the StartSession method which creates a new
instance of the class Session. This instance contains a GUID, a timestamp for the last activity,
and the connected container data with the validation results. The timestamp is updated on
every access of the session data. The IsAlive method proves whether the last activity is
newer than 30 minutes. In case the session is not alive, the Session object is disposed and
unregistered from the SessionManager.

The Session class implements the IDisposable interface and allows to delete the session and
all related container data in memory and on the disk. If the session is called when it is expired,
the dispose method is called and all container data is deleted. Additionally, a background task
proves all user folders on the server and deletes created user downloads and log files from the
server that were not accessed within the last 30 minutes. The sessions can only be identified
by the GUID. This is why every API call has to include the GUID within its request to get
access to the correct session. Each page refresh of the web application including updates of
the data inside the user interface cause a session request so that the activity timestamp is
updated frequently.

5.2.3. Code Generation

The code generation is programmatically realized for the example of user-defined links. As
already stated in Chapter 3.2, the link types of the standard can be extended using the
subClass property of OWL. According to fig. 5.4, the Container ontology is transferred into
a C# OntologyGraph from the dotNetRDF OntologyAPI. This graph differs from the triple
graph because it provides an ontology-centric view of the RDF file. It is an extension of the
triple graph and provides support for resources, classes, properties, and individuals of an ontol-
ogy. To create the respective subclasses of the link types, the OntologyApi offers the function
to get the subclasses of a certain class from the ontology. With this, the inheritance between
classes in C# can be transferred and positioned into the static data model at runtime. Each
link class can be created calling the implemented function createLinkTypeFromOntology-
Graph() which proceeds the data from the ontology to the CodeDom Generator in order to
create the dynamic data model. The method is supplemented with the parameters Ontology-
Class, CSharpCodeProvider, and the CodeNamespace, which provide the class information,
the code generation methods, and the belonging namespace.

The inherited methods need to be implemented correctly during the code generation to prevent
runtime errors. Constructors have to fill inherited fields so that a possible NullReference-
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Exception can be avoided. It is important that the inherited classes are generated according
to their inheritance hierarchy until the bottom class of the hereditary line is reached. The
created classes are provided in a Dynamic.ContainerModel.dll file. When instantiating the
container, the user-defined schemes have to be taken into account. Thus, a dictionary where all
additional types are registered with the respective inheritance is iterated and proves whether
there are instances for an additional type.

5.2.4. Web API

The toolkit can be integrated into third-party desktop or web applications using the Web
API. The user stories in ch. 4.1 describe the required API functions. A separate controller is
integrated into the web application to handle the API requests. The URL routes are mapped
within the controller file. For a first evaluation of the functionality, the requests in table 5.1
are implemented.

Table 5.1.: Excerpt from the Web API definition

Resource GET POST PUT DELETE

/container BadRequest Upload
container file
and start
web session

BadRequest BadRequest

/container/{GUID} returns a
compressed
container file

BadRequest BadRequest Delete
container file
and stop web
session

/container/{GUID}/Results returns a list
of JSON
serialized
validation
results

BadRequest BadRequest BadRequest

/container/{GUID}/
Documents

returns a list
of JSON
serialized
document
metadata

uploads a
new file with
metadata
into the
container

BadRequest Deletes all
files from the
container

/container/{GUID}/
Documents/{docID}

returns
document
file and
metadata

BadRequest Updates the
file and
metadata of
a document

Deletes the
document
from the
container

The requests are separated into the HTTP methods GET, POST, PUT, and DELETE so that a
logical context is set for each request and the routes can be kept short. These do not require
authentication but have to provide the session GUID to connect the user to the correct session
and provide the container data. The session is started when posting a container file to the
/container resource and the request return the GUID for further operations.

Generally, the body of the request as well as the return statements can contain form data which
means literal variables and file binaries. In the most cases, literal variables are JSON-serialized

32



5. Software Implementation

objects from the ContainerModel namespace. These objects are serialized on the server-side
and can be deserialized at client-side when using the IcddToolkitLibrary. The client can work
with the objects as long as there is no transfer of RDF. The changes have to be requested
using the API. The consumption of this API requires an error management. For simplicity, the
requests only return the HTTP responses 200 OK and 400 Bad Request. The Bad Request
error is provoked by default when a resource could not be found. Additionally, Bad Request
is also returned when a web session is no longer available or a request does not match the
required pattern, e.g. an invalid file type is uploaded.

5.2.5. Evaluation

The evaluation of the implementation is done in three steps. Firstly, only the data model
for part 1 of the standard has been implemented. The standard delivers exemplary ICDD
files for parts 1 and 2. The exemplary files are provided stepwise what also allows a step by
step evaluation. After the first part has been implemented successfully, the second part is
developed and evaluated. Both implementations are concurrent with the development of the
web application which visualizes the resulting implementation of the data model. Besides, most
of the evaluation can be done using the built-in debugger. For debug reasons, the application
exports the complete triple graphs into text files to allow a perpetual view on the triple
graphs.

As a result of the evaluation, the implementation has been improved in some important
aspects. The IcddObject class has been optimized due to the integration of both parts.
For interactions with the different physical RDF files, each instance that is inherited from
the IcddObject has a read-only attribute linking to the graph instance from which it was
initially instantiated. In addition, the class CtContainerDescription has been extended with
a dictionary containing all CtParty instances that are defined in the RDF Graph regardless
of whether they were referenced in the container metadata or not. This allows the future user
to create new participants and assign them to an object at a later step.

Figure 5.5.: Desktop application for Web API evaluation
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In a third step, the implementation of the Web API is evaluated using a desktop application
(see fig. 5.5). The application uses an HTTP client and the URI of the API to upload a file
from the local file system to the server. As a result, the application gets the web session ID
from the server. Asynchronous API calls using the session information and the HTTP client
provide validation results and document information.

5.3. Validation Components

The validation consists of two parts, the validation according to the conformance criteria given
in the standard hereafter referred to as conformance validation and the user-defined logical
consistency validation.

5.3.1. Conformance Validation

The application is designed so that each uploaded container must pass the conformance val-
idator first because a not conform container might not be readable. This validator is instan-
tiated from an ICDD file which is then extracted and copied to a local folder. According
to the number of requests on the RDF files, it evolved during the implementation that it is
not appropriate to handle files or the container within the memory. The implementation of
the validator relies on the data structure of the developed classes IcddValidator and the
IcddValidationResult. The validation results class is serializable and has attributes for the
label of the criterion, the respective expected value, and an examined value.

The validation of a container using the validate() method returns a collection of validation
results where each result can be determined comparing the expected and examined value.
During the validation process, each validation result is written into a log file, that can be
downloaded after the process has finished. Moreover, while the ICDD file is in inspection, the
data model is created from the physical file so that not only file-based but also metadata-based
criteria can be validated. The validator proves, whether there are versions of the container,
linkset, or dynamic semantics ontologies included in the file or need to be referenced from the
standard’s web resource. If one of them is not included, the validator gets the files from the
server and includes it in the container for further operations.

After the validation has performed, the isValid() method returns whether all results in the
result collection are valid. Only then, an object of the IcddContainer class is returned by
the getValidContainer() method. For purpose of the Web API, the validation results have
been designed serializable using JSON serialization to provide a standardized and readable
schema.

5.3.2. Consistency Validation

As the application allows visualization and manipulation of links, these need to be validated
according to user-selected logical consistency rules. Therefore, in this implementation math-
ematical definitions of binary relations are used to create consistency rules. These rules then
can be applied to any Linkset that contains instances of the class BinaryLink or links from
a subclass of it.

34



5. Software Implementation

Example: Let us assume that document A is an IFC-model with a set of objects a and
document B is a BOQ-model with a set of work items b. The relation R is bitotal when the
following equation is satisfied:

(∀a ∈ A ∃b ∈ B : (a, b) ∈ R) ∧ (∀b ∈ B ∃a ∈ A : (a, b) ∈ R) (5.1)

This can be applied to the given example. For every building object, a link exists to at least
one work item b. In the same way, every work item b is linked at least to one building object a.
In words, this means that every built object has to be calculated within the bill of quantities
and every work item has to be accounted with a specific dimension of a geometric object. This
issue can be validated by means of a validation test.

The validation is done using the imported data from a container. The user can specify the
linkset and the relational property and starts the process. Entities that do not fulfill the
property rule are returned by the process and can be inspected and repaired afterward. Besides
the bitotal relation property, biunique and, respectively right and left unique as well as right
and left total properties are implemented for linkset validation. To make results available for
the user interface, the abstract class IcddLinkValidation is introduced. Every derived class
needs to implement the function GetKeyValueResults() which provides a dictionary with
results after an instance of the class has been created from the constructor.

Furthermore, the program implementation provides a check of link types within a linkset and
highlights the Links that logically do not belong in the set of links. Therefore, either the
user can select a single link type or the program determines a link type on basis of the most
used type. For the determination, the linkset is partitioned by the specific link types into a
dictionary. The decisive link type is determined from the dictionary selecting the link type
with the most instances. After that, the respective method returns a set of links that logically
do not belong to the set.

5.3.3. Evaluation

While evaluating the implementation, it quickly became evident that the functions for con-
sistency validation in chapter 5.3.2 are not able to record the total set of elements within a
document. This is because not all of the entities from the documents are mapped into the
metadata storage of the container using the respective identifiers. The document identifiers are
connected to the link elements of a link instead of being connected solely with the document
itself. As a consequence, the linksets only contain the document identifiers that are addressed
within a link in the linkset (see fig. 5.6). To sum it up, the standard has not been developed
to maintain all document identifiers within the metadata but the ones that are addressed by
a linkset. On the one hand, this concept helps to avoid redundant data. On the other hand,
developers need to put more effort into the implementation as the data for validation has to
be parsed at runtime.

As a quick optimization of the underlying implementation, a data dictionary structure contain-
ing all identifiers from the container’s linksets is developed to enable a meaningful validation
(see fig. 5.6 bottom box). With this dictionary of links per document, identifiers that are
not contained in the linkset but have been instantiated in the container can also be used for
validation. This is not the qualitative best solution for the issue but enables the possibility to
perform a linkset validation.

This issue can be finally resolved by reading all entity instances from a document. The effort to
implement a document-specific reader for identifiers is very high, as every relevant document
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IDENTIFIER A1

DOCUMENT BDOCUMENT A

IDENTIFIER A2
IDENTIFIER A3

IDENTIFIER B1
IDENTIFIER B2
IDENTIFIER B3

LINKSET 1 LINKSET 2

DOCUMENT C

IDENTIFIER C1
IDENTIFIER C2

IDENTIFIER C3

DOCUMENT A
DICTIONARY

IDENTIFIER A1 IDENTIFIER A2 IDENTIFIER A3

DOCUMENT B IDENTIFIER B1 IDENTIFIER B2 IDENTIFIER B3

DOCUMENT C IDENTIFIER C1 IDENTIFIER C2 IDENTIFIER C3

Figure 5.6.: Mixed origins of identifiers

type such as IFC models needs to be read and interpret into document identifiers. Furthermore,
identifiers can also be available in different types for instance as query-based identifiers and
the respective document parsers must handle these queries.

5.4. Visualization Components

5.4.1. Concept and Implementation

The GUI and methods of visualizing container contents account for a large part of the im-
plementation work. Basically, the design of the ICDD Explorer consists of four major parts
according to fig. 5.7. The first one is the Explorer which is a tree view showing a combina-
tion of files and metadata. Both can be discerned with the tree icons. On the one hand, the
Windows-like file system icons signalize a file that is physical existent in the container. On
the other, the black colored icons denote metadata information. All nodes of the tree view
serve either as informative content or to navigate through the container. For instance, the
index.rdf metadata can be read directly from the tree view. Into the bargain, the files and
some metadata can be selected to retrieve more information on the respective object. The
tree view is based on the open source JavaScript library jstree.

As the figure shows, there are three more parts whose content depends on the selection of
the explorer. The second component is the Document Viewer. The form of representation of
the document depends on the document type. In the example, an IFC file is selected and
the viewer shows a geometric representation of the model using the xViewer from the library
introduced in ch. 5.1.3. The model can be inspected using the mouse and the navigation cube.
Besides IFC models, the viewer can visualize image files using simple HTML code but other
file types are not supported yet for visualization.

The third component is the Extended Document Viewer which is filled with additional infor-
mation on the selected document. In case of an IFC file, it provides a table listing all elements
from the model. The elements are read from the file using the xBim.Essentials library and
stored in a list of objects. These are characterized using the simplified IfcObject class which
only provides the name, the type, the GUID, and a material for the single objects. For other
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Figure 5.7.: Design of the Graphical User Interface

document types, it gives a cross-linkset overview of the links from other documents. In this
stage of development, the explorer is not able to select elements from the 3D model and use
the selection for the creation of links. This is where further implementations can be realized
to achieve an interaction with the geometric model.

Finally, the fourth component is the metadata viewer. This section provides information
on general metadata extracted from the container as well as object-specific respectively
document-specific metadata. Herein, the literal properties of the object are presented directly
while the object properties are issued as representative strings using the ToString() method.
The viewer allows making changes on both literal and object properties. In the latter case,
these can be selected from the stock of appropriate objects inside the container. For instance,
the yellow dropdown box inside the viewer enables the user to select a certain modifier. The
update button triggers the corresponding methods for the C# data model which pass on the
respective changes to the RDF graph. To write the changes into the physical files, the save
container button executes the parser for the RDF files.

5.4.2. Link Maintenance

Particular importance during the implementation was also assigned to the representation of
links and their manipulation. Basically, the explorer offers an ability to view the details of a
link, delete it, or add a new link element to a linkset. The GUI in fig. 5.8 provides a viewer
for the linkset but also for each link inside of them. This enables the user to easily switch
between a linkset and the linked documents from the link details. The extended document
viewer also displays the links as well as the entities that have been defined across all linksets
for the respective document. Altogether it is possible to get a quick impression about the
composition of the links.

In the next step, the functions for deleting and creating links have been implemented in the
user interface. Due to the implementation effort, in the first version of the tool, the creation of
links only provides the standard LsLink type. Links can be created by selecting two documents
from the container and adding an optional identifier to it. The link can then be added to a
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selected linkset and will be integrated into the data model.

Figure 5.8.: Link Visualization and Manipulation

5.4.3. Evaluation

During the stepwise evaluation, errors in the implementation were discovered. Firstly, the
model viewer had problems to open the geometry file. This error is due to the Cross-Origin
Resource Sharing (CORS) policy of latest web browser that is used to prevent a website
from loading resources from another server. In this case, the CORS error was caused by the
geometry file that has been requested from the IfcGeometryWorker instance. To avoid this,
during the HTTP request the file has first been migrated to the correct server and then
processed to the client-side viewer.

A different error has occurred when adding links to a linkset. When creating a link between
two documents where one has an identifier that is already existing in the data model, the link
element is instantiated with the same parameters. This behavior could lead to certain errors
because the identifier is listed more than once and, for instance, the link validation cannot get
appropriate results. Furthermore, when viewing a document, it has several instances for the
identical element. That is the reason why it is important to prevent redundant data storage.
As a solution, the link creation routine has been modified so that it is tested whether the
element is already existent in combination with this document.

After adding links, deleting links is also a challenge. Delete elements from an RDF file can
always result in inconsistencies so that a larger change in the code has been conducted. On the
one hand, the IcddObject class gets a private Delete() method which performs the deletion
process on the RDF level. On the other hand, the class IcddObject defines an abstract method
SafeDelete() which allows checking additional relations between objects. For example, the
safe delete method of the class LsLink indemnifies that every link element inside it is also safe
deleted. These again can be deleted safely with a check whether the element is used in other
links inside of the container. In total, this structure contributes significantly to the consistency
of the data sets.

These two issues lead to the more general question how the standard handles the factual
situation whether link elements are unique inside the container or can be referenced if the
document and identifier are identical.

38



6. Evaluation

This chapter deals with the accomplishment of an evaluation regarding the overall project
and the structure of the implementation. Basically, the aim of the evaluation is to determine
to what extent the presented application fulfills the purpose of validating files in the ICDD
file type. As seen in fig. 4.1, evaluation and testing is part of the general software engineering
process model. Together with development, it forms a fundamental step towards the practical
application of a software product. The chapter is partitioned into three sections, in which
the first section defines the setup and test data, the second records the conduction of the
evaluation and the last formulates the results.

6.1. Setup

An example project in the format of the BIM-LV-Container is used so that the evaluation has
practical relevance. This project represents the relationship between a building model and a
BOQ. Additionally, a simple project schedule is appended to the project data to get a complete
4D and 5D planning. The data setup must be converted to the standardized ICDD format
which can be done using software tools like RDF editors to manually edit the respective files.
This workaround is highly prone to error when interrelationships between elements have to
be established. The first creation of the ICDD container failed due to duplicate element IDs.
Having this in mind, two container setups have been developed. The first one is a minimal
example of the container which has the three files and two linksets, each containing three
binary links. The second one is conceptualized for a stress test of the implementation and
contains the same files but has one small and one larger linkset with 400 links included. The
links were extracted from the Links.xml file of the BIM-LV-Container and programmatically
added to the linkset using the XML formulation of the RDF triples.

The evaluation is done in two steps in which the first step is the gradual examination of
the functional software requirements defined in ch. 4.1. The assessment of non-functional
requirements is the second step and focuses on the quality of the implementation and its
performance. The results are summarized and discussed afterward.

6.2. Results

Inside the web application, the overall procedure is divided into three steps: Upload, Validate
and Explore. The web application does not let the process step Validate be skipped to ensure
data consistency for the Explore step. Having the test data converted into an ICDD file, the
data can be uploaded as BLC.icdd within the form according to the requirement 001 (see fig.
6.1).
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Figure 6.1.: Upload of a container file

6.2.1. Input and Validation

After the file has been uploaded successfully, the user can proceed to the validation. The
conformance validation automatically starts when a user opens the validation page and the
validation view is generated from the file. This view (see fig. 6.2) shows a validation overview
section on the left side, which provides quick information about the status of the validation
e.g. failure or success. Furthermore, it shows the number of documents, linksets, and UDO
contained within this file. After the file has been uploaded, it is available for the validator and
explorer as long as the user is inactive for longer than 30 minutes or removes the file from the
server using the function from the menu on the left side. Thus, the requirements 002, 003,
and 004 are met.

Figure 6.2.: Validation of the exemplary container file

The results of the conformance validation are presented inside the central view element and
are categorized according to the standard. Beyond that, a more detailed validation log in-
cluding the results can be downloaded using the respective menu entry on the left. The visual
processing and the download of the results accomplish the requirements 007 and 008. With
requirement 009, a method to directly correct the failing aspects has not been implemented
because there have been fatal errors when parsing misformulated files RDF/XML files. In
order to offer an assistance for the validation, the log file was extended so that the respective
XML exceptions were also issued within the logs and exactly identify the positions in the files
that caused an error. This has been especially helpful when manually preparing the ICDD file
so that syntax errors can easily be removed.
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The test data has been validated according to the conformance guidelines defined by the
standard and is now prepared for further usage. In this evaluation, a link consistency validation
has been conducted to identify links that deviate from the prevailing link type according to the
requirement 017. This requirement demands that users of the toolkit can validate linksets with
user-defined rules. To facilitate implementation, a set of validation rules has been developed
and made available to the user for selection. These validations can be found in the right box
which is called Link Logic Validation. As already stated in section 5.3, most of the rules apply
to binary relations. Therefore, a positive validation result can only be achieved when every
link is instantiated from a type within the BinaryLink inheritance. The links in the example
have been defined in the general link type and thus cause a falsification although they were
defined as binary one-to-one links. In a further development, the area of link validation should
be considered more closely, in particular also towards the mixed entity origin issues that have
been stated in section 5.3 within the evaluation.

Figure 6.3.: Exploring the validated
container file example

After the exemplary file has been validated successfully,
the content of it can be viewed in the explorer. In addition
to those in the validator, the overview of the container file
shows the number of contained metadata entries, i.e. the
link, link elements and all contained data on metadata en-
tries created from the Party class. The tree view in fig. 6.3
shows the three files in the payload documents folder as ex-
pected. The two different linksets with the overall amount
of six links were read successfully. The structural represen-
tation can be achieved using the tree view with additional
selected metadata information (see ch. 5.4) and with this
fulfills the functional requirement 010. The tree view is
the central navigation element within the container and
allows to control the viewer for linksets and documents. If-
cObjects are extracted from the IFC documents to enrich
the user interface with further information and to allow
a comparison between metadata and physical data. These
objects are added without hierarchy into the tree view for
the respective documents. During the evaluation, it be-
came obvious, however, that this can only be reasonably
represented as long as the models contain only a few ele-
ments.

6.2.2. Visualization

The visualization of payload documents is defined in re-
quirement 011. Basically, the focus in this thesis regarding

visualization lies on the 3D geometry of building models. Nevertheless, the textual visualiza-
tion is available for all documents through the contained entities evaluating the respective
identifiers. Together with the original documents and the identifier definition the user can
understand what information within the documents is addressed through the links.

Fig. 6.4 shows the visualization of the example building model. On the top of the viewer,
the geometric model is displayed. It can be rotated using the mouse drag event on the can-
vas, scaled scrolling the mouse wheel, or translated dragging the mouse wheel. Additionally,
the navigation cube can be used to inspect the file from different predefined positions. Di-
rectly below the geometric model, the list of extracted IfcObjects has been generated. It is
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Figure 6.4.: Exploring the IFC model from the container example

noteworthy that the material is displayed as undefined for all components. Compared to the
original document, indeed the material of some elements is not defined while the material
for the IfcWallStandardCase with the GUID 0X8yGtjy95xvgKn2A4upNY is defined as lime
sandstone. This fact is not displayed in the table. In comparison to fig. 5.7, the objects in the
test data are not defined as IfcElementProxy with a direct definition of the material but as
IfcWallStandardCase in which the material is set in a material layer set. When implementing
the IFC reader, this was not taken into consideration. Nonetheless, the entities evaluated from
the identifiers inside of the links are mapped together with the document information in the
below table via the GUID. Chapter 5.4 already pointed out the missing reference between the
graphical and textual representation of the entities, which needs to be improved in the further
development work. The last requirement in the visualization category (no. 012) deals with
the representation of the elements inside a document that are concerned by a link. In order to
develop a general medium that can be used for all document types, the tabular presentation
method was selected for displaying the sum of links referencing this document.
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6.2.3. Links

After the visualization category was completed with a link-related requirement, the evalua-
tion is continued with the category link requirements. The first link requirement (no. 013)
demands a representation of the links inside a linkset. The presentation of linksets was already
introduced in chapter 5.4. However, the evaluation revealed an error that had not previously
occurred, because only a single linkset was considered before. Whenever a link is added to
any linkset, the routine checks whether the affected link element is already existent for the
document. If this is true, the element was only referenced inside the RDF file. This was un-
problematic as long as there was only one linkset. The references along two or more linksets
are not supported by either the implemented data model or the standardized file format and
finally lead to a reference to a non-existing element. It was decided for this implementation
that a link element can be created once in every linkset to be consistent inside the single
linksets but to constrain the redundancy of the whole structure, which will be discussed in
the results.

Figure 6.5.: Adding a new link to the 4D-Links

Another requirement implemented in the application is the creation of new links in any linksets
(no. 015). The program fulfills this with a further input form in which firstly a linkset and a
type can be selected. Furthermore, two of the existing files in the container can be chosen for
linking. The facultative identifier input fields can be provided with a free text or left empty.
The corresponding link element is created from this information and the link is attached to the
linkset. For requirement 015, the updating and deleting of objects, only the delete function
was implemented into the application. A reason for this is the already mentioned function
SafeDelete(), which ensures that no fragments and orphaned links are contained in an RDF
file. A function to provide updates to link elements would have to implement the same checks,
which is not appropriate due to redundancy and maintenance of the source code. This means,
an update has to be performed in two steps: deleting a link and creating a new link with the
desired properties.

The filter for existing links which has been defined for development in requirement 016 was
realized in the internal code for the link validation. An implementation for the user interface
was postponed to a new version due to the low priority.
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6.2.4. Metadata

The metadata for the objects inside of the container can be read from the metadata viewer
according to chapter 5.4. The viewer allows to update literal and also object properties. It is
not possible to completely delete a property but to overwrite it either with an empty string
or with an empty object. Some metadata fields are locked for editing because they must not
be edited, such as the Creator or the CreationDate. Altogether, the metadata requirements
018, 019, and 020 are implemented as defined.

In this evaluation, several processes were carried out and the saved files were reloaded into
the web application without any information being lost. In addition, the individual process
steps, especially in metadata processing, were saved in the container file, which is unpacked
after saving and the RDF files are viewed with the Protégé ontology editor. This was done to
ensure a compliant and consistent data format even after the writing process into the RDF
files. This also satisfies issue 005 of the file operation requirements.

6.2.5. Web API

Another seven requirements were defined for the implementation of the Web API. Since the
priority of developing the Web API was lower than the priority of the web application, only
the functions mentioned in ch. 5.2.4 Web API were developed. This means that not all re-
quirements can be met, but a demonstration of the interface is possible.

6.2.6. Quality

Basically, the quality requirements are satisfied by the current implementation. To evaluate
the availability or rather the accessibility, the application was migrated onto a web server
instead of running on a local machine. This required some adjustments, especially to file
paths and the connectivity between the web application and the IfcWorker. On the server
environment, the execution of C++ class libraries within the IfcWorker application caused an
unexpected error due to an incompatible server configuration. However, the application is
running on the server and a connectivity test between the local desktop application and the
remote web application was successful.

The usability of the web application was focused in the chapter 5.4 Visualization Components.
All important functions are highlighted in color and arranged in a user-friendly way. However,
an objective result on usability can only be determined in a user survey. As maintainability
is always an important topic for application distribution, the web application is a very main-
tainable way to provide updated versions of a software to the end user. The Web API, on the
other hand, should not be updated as users are implementing the specific version of the API.
The API is not finally defined and therefore has no final documentation what should be im-
plemented in the next version of the application. Finally, all data security requirements have
been satisfied by the implementation of the session manager. The complete user directory is
deleted after the session is closed.
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6.2.7. Performance

In addition to the functional and quality requirements, also the performance requirements
are evaluated. Therefore, the small and the large exemplary files were uploaded to the server.
After that, the actions of validation, opening the explorer, modifying metadata of a document
and saving the container file were contemplated. The measurements refer to the respective
methods that are executed on the server-side and were averaged over two sequences each. The
client-side time and memory efficiency are not considered in this evaluation. The graph 6.6

0

200

400

600

800

1000

1200

UPLOAD VALIDATE EXPLORE MODIFY SAVE

TI
M

E 
[m

s]

Time efficiency

SMALL LARGE

(a) Time efficiency

0

100

200

300

400

500

600

700

UPLOAD VALIDATE EXPLORE MODIFY SAVE

PH
YS

IC
AL

 M
EM

O
RY

 [M
B]

Memory efficiency

SMALL LARGE

(b) Memory efficiency

Figure 6.6.: Efficiency of the developed web application according to performed operations

a) shows that the time usage started climbing after upload, peaking at the validation, and
flattened out at a level of nearly zero milliseconds for opening the explorer and modifying a
document. For the large file, about 200 milliseconds are used for the saving process. These
peaks indicate the operations where the RDF graphs are read from the files or written into
the files. An increase of factor 100 in entries results in an increase of factor 10 in time use.
Within the validation method, the complete container file is instantiated and moved into the
memory. A positive aspect is that the explorer does not need the time and can be opened
directly. The graph does not show that the explorer still needs to be rendered for all entries
on the client side, which in turn leads to a slowdown and loading times.

According to the graph in fig. 6.6 b), the demand for memory rose sharply between the upload
of the file and the opening of the explorer before it stabilizes at an approximately constant
level. All in all, both measurements meet the expectations and requirements. Nevertheless,
for example, the overall time efficiency can be improved by asynchronous method calls from
the client-side.

6.3. Discussion

In the synopsis of requirements and the evaluation performed, the state of implementation
reflects an advanced application. Nonetheless, this application is not yet ready for practical
use. During implementation and evaluation improvements were recorded which are summa-
rized for further implementation. Firstly, the validation process quickly raises the question
of what happens after unsuccessful validation. The results are recorded into a log file. How-
ever, a more comfortable solution is the implementation of an auto-correction function. In
addition, an extended consistency or completeness check can be carried out during validation,
which compares the entities from the documents with those from the link sets. To do this,
additional components for reading different file types would have to be implemented, which
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6. Evaluation

can also display additional file types in the viewer. Finally, a converter can be implemented
that transfers container files from the MMC format to the ICDD format. To achieve a high
reusability of the framework, the Web API needs to be refined and documented to foster the
easy access of container files. It was also noticeable when inspecting RDF files before import
and after export that the structure of entries inside the file has changed. The structure of the
original data from the standard’s annex had a nested pattern whereas the exported data from
the application had a sequential pattern. However, this did not affect the quality of imports
but simply had an impact on readability.

To address the discussion about the definition of link elements and their use within linksets,
the question arises whether the combination of document and identifier describes a unique
object. Does every identical combination of document and identifier have to be instantiated
again? The standard defines a link element consisting of a link to a document and an identifier
as a proxy class which is actually not a unique element and just allows the assembled view of
an element. Unique physical document entities must be defined using the Entity structure of
part 2 of the standard which allows to define e.g. building objects or functional entities.

Nonetheless, it must be discussed whether an identifier is unique. A string based identifier
that specifies a combination of the field and its value can be unique if referring to a unique
value as it was done in this evaluation with the GUID or TaskId. However, an identifier can
also address several elements. For instance, if the field is Room and the value is Kitchen, every
element tagged with the specific room attribute are concerned by the identifier. This can also
be transferred to the other identifier classes. Should each identifier be instantiated regardless of
whether it is identical to an existing identifier? At this point, the object-oriented programming
view contrasts the systematic logic just mentioned for the identification of objects. A problem
while reusing already instantiated identifiers is the origins of these inside of the linksets.
This could be avoided by placing references to the respective files which leads to a higher
complexity.

As it was already stated in chapter 5.3.3, the identifiers are bound to the linksets. It is
debatable whether it has advantages to attach identifiers to the documents. On the one hand,
the identifiers can only be applied to the corresponding documents so it is logical to locate
them in the same file and namespace as the definition of the documents (see fig. 6.7).

Figure 6.7.: Optimization of the relation between Identifier, Link and Document

On the other hand, the implementation as it was done in the standard has the advantage
that the individual files are not inflated too much and only individuals are kept in each file
that are actually referenced. If the identifier is attached to the document, the LinkElement
proxy class is negligible. This, however, means that no more links can be created without
identifiers which in turn speaks for the use of the proxy class. All these findings show the
complex structure of the standard and reflects the high challenges that the standardization
committee has to face.
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In the introduction, the thesis has opened with the question of how individual models and
documents can be linked and exchanged within a container. To approach this question, the
thesis delivers background on the current exchange methods of linked building models and
technologies in the field of Linked Open Data. It critically examines the drafted ISO 21591
“Information Container for Data Drop” standard and discusses it in detail on the basis of
application cases. Furthermore, a toolkit for validation, import, and export of the ICDD file
type is introduced providing web-based access to the dynamic data model inside an ICDD
file.

The research and the development of this thesis lead to the conclusion that the ICDD is an
excellent medium for the exchange of linked building models as the respective standard is
based on the emerging technology of Linked Data and the proven concept of an information
container.

Basically, the container can be applied in many use cases and fulfills the purpose of data
transfer in a single data drop. It is based on the paradigm of Linked Data which is a promising
technology. This can be corroborated with the number of approaches for integration of Linked
Data into AEC as well as in other knowledge-based fields of application. The structure of
the container is well organized in folders and can provide documents and link sets in a large
number. It is highly extendable and flexible due to User Defined Ontologies and dynamic
metadata. Although, this flexibility leads to a higher complexity regarding the implementation
of import and export functionalities. This applies in particular to the dynamic semantics and
the parsing from RDF into a programmatic data model.

The development of an import, export and validation toolkit has demonstrated that back-
ground knowledge is absolutely necessary for an implementation. This work has the claim to
give other developers an overview of the file type and the technical boundary conditions on
the one hand, and provide a possibility for end-users to validate and view the content of their
files on the other hand.

The tool for validation of files according to the standard was equipped with an explorer to
view and manipulate data inside a container file. It is suitable for users that need to validate
their files. Developers who have to implement import and export methods of information
containers into their individual software solution can extract information for implementation
approaches from this thesis. The developed and presented class library can be used in further
projects and the Web API allows to easily integrate the complete framework into a new
application. Furthermore, the thesis demonstrates the technologies and structures that can
be used to develop an RDF import and export in accordance with the ICDD standard. A
stepwise evaluation demonstrates that the defined requirements for the toolkit were mostly
fulfilled and the performance of the application was successfully assessed.

During the implementation and the evaluation of the toolkit, it became obvious that the ICDD
is an advanced approach for handling complex relationships between documents, links and
additional information and making it available for all participants of the planning process.
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The implementation of string-based, query-based or URI-based identifiers, as well as the
different link types, open up new possibilities for the definition of links. The discussion about
the position of identifiers inside a container in the previous chapter has attempted to point
out the intensive thoughts of the committee. These must be made during standardization
to achieve a qualitative interoperable data type for the exchange of linked building models.
Nevertheless, the standard is still under development and there are a few points that could be
focused for further optimization of the standard. While future work will assess the practicality
of the standard and the application cases, the process-related integration of the container into
construction planning requires further research. It is important to point out that this work is
based on the draft of the standard. The final version may vary and can result in changes for
this framework.

In the end, Linked Data and the Information Container for Data Drop can significantly change
the way how Linked Building Data can be exchanged and made accessible during the complete
lifecycle.
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A.1. Codemap for ContainerModel Namespace
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